Addressing bound water in the thermo-poromechanical modeling of swelling clays

Laurent BROCHARD

Laboratoire Navier (IPParis ENPC, Univ. Gustave Eiffel, CNRS)

October 10th, 2024 Comité Français de Mécanique des Roches

Laurent BROCHARD Addressing bound water in the THM modeling of swelling clays October 10th, 2024

1st anomaly: undrained heating experiment

Excessive water pressurization

Monfared, M., Sulem, J., Delage, P., & Mohajerani, M. (2011). A Laboratory Investigation on Thermal Properties of the Opalinus Claystone. Rock Mechanics and Rock Engineering, 44(6), 735–747. http://doi.org/10.1007/s00603-011-0171-4

Laurent BROCHARD

Addressing bound water in the THM modeling of swelling clays October 10th, 2024

2nd anomaly: drained heating experiment

- Reversible thermal expansion excessive
- Irreversible contraction (normally consolidated clays)

Sultan, N., Delage, P., & Cui, Y. J. (2002). Temperature effects on the volume change behaviour of Boom clay. Engineering Geology, 64(2-3), 135–145. http://doi.org/10.1016/S0013-7952(01)00143-0

Objective: poromechanics capturing adsorption

- Anomalies attributed to the effects of adsorption
- Usual poromechanics assumes bulk properties

Poromechanics and adsorption

- Thermodynamic description : osmotic equilibrium between adsorbed and bulk phases
- Effect on mechanics:
 - Disjoining pressure $P_c \neq P_b$
 - P_c is affected by composition or temperature independently from P_b
- → <u>Ex:</u> swelling effect due to P_c at P_b = Cst
- → Need to account for the thermodynamics of the confined fluid in the poromechanics

Laurent BROCHARD Addressing bound water in the THM modeling of swelling clays

Confined behavior by molecular simulation

- Drained ⇒ Grand Canonical Monte Carlo (long)
- Undrained \Rightarrow Molecular Dynamics (fast)

Confined behavior by molecular simulation

1W 2W **Observation**: bulk 0 MPa 0 MPa (10^{-5}K) 20 MPa 200 Thermal expansion lower than for 40 MPa 40 MPa 40 MPa 60 MPa 60 MPa 60 MPa 8 80 MPa 80 MPa 80 MPa bulk water Thermal expansion Strong difference between 100 undrained volume and number 50 rigidity ($K^{V} \sim 2 K^{N}$) Non negligible drained rigidity 300 350 400 450 500 Temperature T (K) $(K^d \sim K^N)$ 12 Some drained thermal expansion 1W 2W $(\alpha^{s} \ll \alpha^{d} \lesssim \alpha^{u})$ 10 or K_c^N (GPa) $--K_c^N$ $--K_{c}^{N}$ K^V K^V 8 ⇒ Gibbs-Duhem not valid (confined) 6 behavior not extensive) K_c^V $G-D \Rightarrow K^{\vee} = K^{N}$ and $K^{d} = 0$ and $K^{d}\alpha^{d} = 0$ $G-D \Rightarrow 3$ thermo-mechanical moduli for a fluid 0L 0 100 20 40 60 80 Pressure Pc (MPa)

Thermodynamics of the confined fluid

• Usual fluid (Gibbs-Duhem valid): 3 moduli

$$\begin{cases} dP_b = -\frac{K_b}{V_b} dV_b + \frac{K_b}{N_b} dN_b + K_b \alpha_b dT \\ d\mu = -\frac{K_b}{N_b} dV_b + \frac{K_b V_b}{N_b^2} dN_b - \left(\frac{S_b}{N_b} - K_b \frac{V_b}{N_b} \alpha_b\right) dT \\ dS_b = K_b \alpha_b dV_b + \left(\frac{S_b}{N_b} - K_b \frac{V_b}{N_b} \alpha_b\right) dN_b + V_b \frac{c_b^v}{T} dT \end{cases}$$

Confined fluid (Gibbs-Duhem not valid): 6 moduli

$$\begin{cases} dP_c = -\frac{K_c^V}{V_c} dV_c + \frac{K_c^N}{N_c} dN_c + K_c^V \alpha_c^u dT \\ d\mu = -\frac{K_c^N}{N_c} dV_c + \frac{\left(K_c^N\right)^2}{K_c^N - K_c^d} \frac{V_c}{N_c^2} dN_c - \left(\frac{S_b}{N_b} + \frac{K_c^N}{K_c^N - K_c^d} \frac{V_c}{N_c} \left(K_c^d \alpha_c^d - K_c^V \alpha_c^u\right)\right) dT \\ dS_c = K_c^V \alpha_c^u dV_c + \left(\frac{S_b}{N_b} + \frac{K_c^N}{K_c^N - K_c^d} \frac{V_c}{N_c} \left(K_c^d \alpha_c^d - K_c^V \alpha_c^u\right)\right) dN_c + \frac{V_c c_c^v}{T} dT \end{cases}$$

- Volume and number rigidities differ: $K^{V} \neq K^{N}$
- There is a non-zero drained rigidity: $K^d \neq 0$
- There is a drained thermal-expansion: α^d

Usual thermo-poro-mechanics

- Elastic mechanical response of a porous solid submitted to
 - A change of deformation $d\varepsilon$
 - A change of pore pressure *dP*
 - A change of temperature *dT*

stress
$$d\sigma = Kd\epsilon - bdP - K\alpha dT$$

porosity
$$d\phi = bd\epsilon + \frac{dP}{N} - \alpha_{\phi} dT$$

entropy
$$ds_s = K\alpha d\epsilon - \alpha_{\phi} dP + \frac{c}{T} dT$$

K: bulk mod., *b*: Biot coef., *N*: Biot mod., α : thermal exp., c: heat capacity <u>Properties of the solid only</u>

$$b = 1 - \frac{K}{k_s}, \ \frac{1}{N} = \frac{b - \phi}{k_s}, \ \alpha = \alpha_s, \ \alpha_\phi = \alpha_s \left(b - \phi \right), \text{ and } c = c_s \left(1 - \phi \right) - KT\alpha_s^2$$

<u>Note:</u> case of an isotropic behavior limited to spherical response, can be generalized Coussy, O. (2010) Mechanics and Physics of Porous Solids. Wiley & Sons

Usual thermo-poro-mechanics

- Elastic mechanical response of a porous solid submitted to
 - A change of deformation $d\varepsilon$
 - A change of pore pressure *dP*
 - A change of temperature *dT*

Maxwell relations for η_s

stress
$$d\sigma = Kd\epsilon - bdP - K\alpha dT$$

porosity
$$d\phi = bd\epsilon + \frac{dP}{N} - \alpha_{\phi} dT$$

entropy
$$ds_s = K\alpha d\epsilon - \alpha_{\phi} dP + \frac{c}{T} dT$$

- Thermodynamics:
- Helmholtz free energy of the solid
- minimization of $~~\eta_s=f_s-\phi P$ Pairs of conjugated variables
- Energy balance $d\eta_s = \underline{\underline{\sigma}}: d\underline{\underline{\varepsilon}} \phi dP s_s dT$

Coussy, O. (2010) Mechanics and Physics of Porous Solids. Wiley & Sons

Addressing bound water in the THM modeling of swelling clays

Consequence for thermo-poro-mechanics

• Pore (confined) pressure $P_c \neq$ outside (bulk) pressure P_b

variable conjugated to the porosity control parameter "what mechanical force is applied in the pores" "what can be controlled by the experimentalist"

- Need to consider a new thermodynamic ensemble
 - Pore and outside fluid share the same chemical potential μ (osmotic equilibrium) \rightarrow appropriate ensemble (ε , μ , T) instead of (ε , P_c , T)
- Minimization of $\,\omega=f-\mu\phi
 ho_c$ Fluid confined density Helmholtz free energy Fluid chemical potential (solid + fluid) $dP_b - \rho_b d\mu - s_b dT = 0$ (Gibbs-Duhem) • Energy balance • Energy balance $d\omega = \sigma d\epsilon - \phi \rho_c d\mu - s dT \stackrel{\downarrow}{=} \sigma d\epsilon - \phi^{eff} dP_b - s^{eff} dT$ $\rightarrow P_b$ conjugated to the effective porosity $\phi^{eff} = (\frac{\phi \rho_c}{\rho_c})$ \rightarrow T conjugated to the effective entropy $s^{eff} = s - \phi^{eff} s_h$ The behavior at controlled bulk pressure (drained) is no more independent of the fluid Addressing bound water in the THM modeling of swelling clays October 10th, 2024 Laurent BROCHARD

Constitutive relations

Constitutive relations

Pb: Gibbs-Duhem not valid

Laurent BROCHARD

Addressing bound water in the THM modeling of swelling clays

Pb: Gibbs-Duhem not valid

Constitutive relations at controlled (ε , P_b , T)

Gibbs-Duhem valid $\Leftrightarrow \delta = \gamma = 1$

Finally

$$\begin{cases} d\sigma = Kd\epsilon - bdP - K\alpha dT \quad (\varepsilon, P_{c}, T) \\ d\phi = bd\epsilon + \frac{dP}{N} - \alpha_{\phi} dT \\ ds_{s} = K\alpha d\epsilon - \alpha_{\phi} dP + \frac{c}{r} dT \\ \downarrow \qquad (\varepsilon, \varphi, T) \\ d\sigma = (K + Nb^{2}) d\epsilon - Nbd\phi - (K\alpha + Nb\alpha_{\phi}) dT \\ dr = -Nbd\epsilon + Nd\phi + N\alpha_{\phi} dT \\ ds_{s} = (K\alpha + Nb\alpha_{\phi}) d\epsilon - N\alpha_{\phi} d\phi + \left(\frac{c}{r} - N\alpha_{\phi}^{2}\right) dT \end{cases} \begin{cases} dP_{c} = (\gamma - \delta) \frac{K_{s}}{k_{c}} d\phi + \gamma\rho_{c} d\mu + \gamma\rho_{c} \left(\frac{s_{b}}{r_{b}} + \frac{1 - \gamma}{r_{c}} K_{c} \alpha_{c}^{2}\right) dT \\ d(\phi_{c}) = \gamma\rho_{c} d\phi + \gamma \frac{\phi \rho_{c}^{2}}{K_{c}} d\mu + \gamma \frac{\phi \rho_{c}^{2}}{K_{c}} \left(\frac{s_{b}}{r_{b}} - \frac{K_{c}}{r_{c}} \left(\frac{s_{c}}{\gamma} \alpha_{c}^{a} - \frac{1 - \gamma}{\gamma} \alpha_{c}^{d}\right)\right) dT \\ d(\phi_{c}) = \gamma\rho_{c} \left(\frac{s_{b}}{r_{b}} + \frac{1 - \gamma}{r_{c}} K_{c} \alpha_{c}^{2}\right) d\phi + \gamma \frac{\phi \rho_{c}^{2}}{K_{c}} \left(\frac{s_{b}}{r_{b}} - \frac{K_{c}}{r_{c}} \left(\frac{s_{b}}{\gamma} \alpha_{c}^{a} - \frac{1 - \gamma}{\gamma} \alpha_{c}^{d}\right)\right) d\mu \\ d(\phi_{c}) = \gamma\rho_{c} \left(\frac{s_{b}}{r_{b}} + \frac{1 - \gamma}{r_{c}} K_{c} \alpha_{c}^{2}\right) d\phi + \gamma \frac{\phi \rho_{c}^{2}}{R_{c}} \left(\frac{s_{b}}{r_{b}} - \frac{K_{c}}{r_{c}} \left(\frac{s_{b}}{\gamma} \alpha_{c}^{a} - \frac{1 - \gamma}{\gamma} \alpha_{c}^{d}\right)\right) d\mu \\ d(\phi_{c}) = \gamma\rho_{c} \left(\frac{s_{b}}{r_{b}} + \frac{1 - \gamma}{r_{c}} K_{c} \alpha_{c}^{2}\right) d\phi + \gamma \frac{\phi \rho_{c}^{2}}{R_{c}} \left(\frac{s_{b}}{r_{b}} - \frac{K_{c}}{r_{c}} \left(\frac{s_{b}}{\gamma} \alpha_{c}^{a} - \frac{1 - \gamma}{\gamma} \alpha_{c}^{d}\right)\right) d\mu \\ d(\phi_{c}) = \gamma\rho_{c} \left(\frac{s_{b}}{r_{b}} + \frac{1 - \gamma}{r_{c}} K_{c} \alpha_{c}^{2}\right) d\phi + \gamma \frac{\phi \rho_{c}^{2}}{R_{c}} \left(\frac{s_{b}}{r_{b}} - \frac{K_{c}}{R_{c}} \left(\frac{s_{b}}{\gamma} \alpha_{c}^{a} - \frac{1 - \gamma}{\gamma} \alpha_{c}^{d}\right)\right)^{2} \right) dT \\ d(\phi_{c}) = \psi \left(\frac{s_{c}}{r_{c}} + \gamma \frac{K_{c}}{K_{c}} \left(\frac{s_{b}}{r_{b}} - \frac{K_{c}}{R_{c}} \left(\frac{s_{b}}{\gamma} \alpha_{c}^{a} - \frac{1 - \gamma}{\gamma} \alpha_{c}^{d}\right)\right)^{2} \right) dT \\ We chanical equilibrium between the fluid and the solid \Rightarrow equality of pore pressure \Rightarrow value of φ is set (no more a control parameter) Usual structure satisfying
Maxwell relations
$$d\sigma = K^{eff} d\epsilon - b^{eff} d\rho + \frac{M^{2}}{N^{eff}} - \alpha_{\phi}^{eff} dT \qquad b^{eff} = \frac{\beta b \delta \rho_{c}}{\rho_{b}}$$
 is the effective bulk modulus,
$$d\phi^{eff} = K^{eff} \alpha^{eff} d\epsilon - \alpha_{\phi}^{eff} d\rho + \frac{C^{eff}}{T} dT \qquad \text{etc.}$$$$

Brochard, L., & Honório, T. (2020). International Journal of Engineering Science, 152, 103296.

Addressing bound water in the THM modeling of swelling clays C

Comments

- Fluid properties are involved in all effective moduli (usual poromeca: moduli depend on solid only)
- One recovers usual poro-mechanics by considering $\delta = \gamma = 1$ (Gibbs-Duhem valid) and $\rho_c = \rho_b$
- Has been adapted to:
 - Undrained behavior
 - Double porosity media (micro- and macro-pores)
- <u>Main difficulty</u>: estimate confined fluid properties
 - Molecular simulation
 - Inverse analysis of well chosen experiments
 - Direct measurement (challenging)

Applications

Drained thermal expansion

$$\frac{\partial \epsilon}{\partial T}\Big|_{\sigma, P_b} = \begin{cases} \alpha_s \\ \alpha_s \\ \alpha_s + \frac{M^d b \phi}{K + M^d b^2} \left(\alpha_c^d - \alpha_s\right) \end{cases}$$

usual poromechanics ext. poromech. with G-D ext. poromech. without G-D

- Only without G-D can explain the large magnitude for clays
 - Th. exp. ~ 10⁻⁴ K⁻¹
 - Steel / concrete / minerals ~ 10⁻⁵ K⁻¹
 - Liq. H₂O (300K) = 2.10⁻⁴ K⁻¹

<u>Source</u> : experimental data from Sultan (2002) Engineering Geology, 64(2-3), 135–145

Applications

- Fluid pressurization during undrained heating
 - Molecular simulation to estimate confined fluid properties
 - Double porosity approach proves essential (excess pressurization mostly due to fluid flow from micro- to macropores)

Property	1W water	2W water
K_c (GPa)	$7.1 - 0.012 \cdot (T - 300 \text{K})$	$1.95 - 0.0035 \cdot (T - 300 \text{K})$
δ	1.86	2.17
γ	0.16	-0.30
$\alpha_c^u (10^{-5} \text{K}^{-1})$	$6.1863 \cdot 10^{-6} \cdot T^3 - 0.0088373 \cdot T^2 + 4.2189 \cdot T - 619.60$	$0.15231 \cdot T + 8.3333$
$\alpha_c^d \ (10^{-5} \mathrm{K}^{-1})$	36	15
ρ_c/ρ_b	1	1

Conclusions

- Revisit the poromechanics of clays to capture the effect of bound water
- Successfully reproduce THM anomalies
- Main messages
 - Confinement = more thermo-mechanical properties
 - Confined properties: to explore
 - Integration to poromechanics non-trivial
 - Fluid transfers between free and bound water are essential

Many thanks to

Tulio HONÓRIO (former postodc, now LMPS & CEA)

Funding from:

- ANR project TEAM2ClayDessicc (ANR-14-CE05-0023-01)
- CNRS NEEDS/MIPOR initiative project ARPENTONS

For more details:

Honório et al. (2017) Langmuir, 33(44), 12766-12776.

Brochard & Honório (2020) International Journal of Engineering Science, 152, 103296.

Brochard (2021) The Journal of Physical Chemistry C, 125(28), 15527-15543.

Brochard & Honório (2021) Acta Geotechnica, 16(9), 2713-2727.

Laurent BROCHARD

Addressing bound water in the THM modeling of swelling clays